Z.1. BUDOWA MACIERZY CHARAKTERYSTYCZNEJ

Funkcje podstawowe opisano w lokalnym układzie współrzędnych związanym z punktem źródłowym. Przyjęto oznaczenia: \(r_i = \sqrt{n_i^2 + s_i^2} \), \(i = 1, 2, 3... e \).

Z.1.1. Funkcje podstawowe dla płyty nieograniczonej, obciążonej siłą skupioną \(P_i^* = 1^* \)

\[
w_i^* = \frac{1}{8\pi D} r_i^2 \ln(r_i)
\]

\[
\varphi_{n_i}^* = \frac{1}{4\pi D} n_i \ln(r_i) + \frac{1}{8\pi D} n_i
\]

\[
\varphi_{s_i}^* = \frac{1}{4\pi D} s_i \ln(r_i) + \frac{1}{8\pi D} s_i
\]

\[
M_{n_i}^* = -\frac{1}{4\pi} \left[(1 + v_p) \ln(r_i) + \frac{n_i^2 + v_p s_i^2}{r_i^2} + \frac{1}{2} (1 + v_p) \right]
\]

\[
M_{s_i}^* = -\frac{1}{4\pi} \left[(1 + v_p) \ln(r_i) + \frac{s_i^2 + v_p n_i^2}{r_i^2} + \frac{1}{2} (1 + v_p) \right]
\]

\[
M_{n_i} = -\frac{1 - v_p}{4\pi} \frac{n_i s_i}{r_i^2}
\]

\[
T_{n_i} = -\frac{1}{2\pi} \frac{n_i}{r_i^2}
\]

\[
T_{s_i} = -\frac{1}{2\pi} \frac{s_i}{r_i^2}
\]

Z.1.2. Funkcje podstawowe dla płyty nieograniczonej, obciążonej momentem skupionym \(M_{n_i}^* = 1^* \)

\[
\bar{w}_i = \frac{1}{4\pi D} n_i \ln(r_i)
\]

\[
\bar{\varphi}_{n_i} = \frac{1}{4\pi D} \ln(r_i) + \frac{n_i^2}{r_i^2}
\]

\[
\bar{\varphi}_{s_i} = \frac{1}{4\pi D} \frac{n_i s_i}{r_i^2}
\]
\[\overline{M}_{n_i} = -\frac{1}{4\pi} \frac{n_i}{r_i^2} \left[(1 + v_p) + 2(1 - v_p) \frac{s_i^2}{r_i^2} \right] \]
(Z.12)

\[\overline{M}_{s_i} = -\frac{1}{4\pi} \frac{n_i}{r_i^2} \left[(1 + v_p) + 2(1 - v_p) \frac{s_i^2}{r_i^2} \right] \]
(Z.13)

\[\overline{M}_{n,s} = \frac{1 - v_p}{4\pi} \frac{s_i}{r_i^2} \left(2 \frac{n_i^2}{r_i^2} - 1 \right) \]
(Z.14)

\[\overline{T}_{n_i} = \frac{1}{2\pi} \left(\frac{n_i^2 - s_i^2}{r_i^4} \right) \]
(Z.15)

\[\overline{T}_{s_i} = \frac{1}{\pi} \left(\frac{n_i s_i}{r_i^4} \right) \]
(Z.16)
Z.2. OBLICZANIE UGIĘCIA

Układ współrzędnych przesunięto równolegle i zaczepiono w punkcie, w którym obliczane jest ugięcie. Przyjęto oznaczenia: \(x_1 = x \), \(x_2 = y \) i \(r = \sqrt{x^2 + y^2} \).

Z.2.1. Funkcje podstawowe dla płyty nieograniczonej, obciążonej siłą skupioną \(P^* = \frac{1}{2} \)

\[
\begin{align*}
\varphi_x^* &= \frac{1}{4\pi D} x \ln(r) + \frac{1}{8\pi D} x \\
\varphi_y^* &= \frac{1}{4\pi D} y \ln(r) + \frac{1}{8\pi D} y \\
M_x^* &= -\frac{1}{4\pi} \left(1 + v_p \right) \ln(r) + \frac{x^2 + v_p y^2}{r^2} + \frac{1}{2} \left(1 + v_p \right) \\
M_y^* &= -\frac{1}{4\pi} \left(1 + v_p \right) \ln(r) + \frac{y^2 + v_p x^2}{r^2} + \frac{1}{2} \left(1 + v_p \right) \\
M_{xy}^* &= -\frac{1 - v_p}{4\pi} \frac{xy}{r^2}, \\
T_x^* &= \frac{1}{2\pi} \frac{x}{r^2} \\
T_y^* &= \frac{1}{2\pi} \frac{y}{r^2}
\end{align*}
\]
Z.3. OBLICZANIE KĄTÓW OBROTU

Układ współrzędnych przesunięto równolegle i zaczepiono w punkcie, w którym obliczany jest kąt obrotu. Przyjęto oznaczenia: \(x_1 = x \), \(x_2 = y \) i \(r = \sqrt{x^2 + y^2} \).

Z.3.1. Obliczanie kąta obrotu \(\varphi_x \)

\[
\frac{\partial w^*}{\partial x} = -\frac{1}{4\pi D} x \ln(r) + \frac{1}{8\pi D} x
\]

\[
\frac{\partial \varphi_x^*}{\partial x} = \frac{1}{8\pi D} \frac{x^2 \ln(r^2) + y^2 \ln(r^2) + 3x^2 + y^2}{r^2}
\]

\[
\frac{\partial \varphi_y^*}{\partial x} = \frac{1}{4\pi D} \frac{xy}{r^2}
\]

\[
\frac{\partial M_x^*}{\partial x} = \frac{1}{4\pi} \frac{x(-x^2 - 3y^2 - v_p x^2 + v_p y^2)}{r^4}
\]

\[
\frac{\partial M_y^*}{\partial x} = -\frac{1}{4\pi} \frac{x(x^2 - y^2 + v_p x^2 + 3v_p y^2)}{r^4}
\]

\[
\frac{\partial M_{xy}^*}{\partial x} = \frac{1}{4\pi} \frac{y(v_p - 1)(y^2 - x^2)}{r^4}
\]

\[
\frac{\partial T_x^*}{\partial x} = -\frac{1}{2\pi} \frac{1}{r^2} + \frac{1}{\pi} \frac{x^2}{r^4}
\]

\[
\frac{\partial T_y^*}{\partial x} = \frac{1}{\pi} \frac{xy}{r^4}
\]

Z.3.2. Obliczanie kąta obrotu \(\varphi_y \)

\[
\frac{\partial w^*}{\partial y} = \frac{1}{4\pi D} y \ln(r) + \frac{1}{8\pi D} y
\]

\[
\frac{\partial \varphi_x^*}{\partial y} = \frac{1}{4\pi D} \frac{xy}{r^2}
\]

\[
\frac{\partial \varphi_y^*}{\partial y} = \frac{1}{8\pi D} \frac{x^2 \ln(r^2) + y^2 \ln(r^2) + x^2 + 3y^2}{r^2}
\]

\[
\frac{\partial M_x^*}{\partial y} = -\frac{1}{4\pi} \frac{y(y^2 - x^2 + v_p y^2 + 3v_p x^2)}{r^4}
\]

\[
\frac{\partial M_y^*}{\partial y} = \frac{1}{4\pi} \frac{y(x^2 - y^2 + v_p x^2 + 3v_p y^2)}{r^4}
\]
\[
\frac{\partial M^*}{\partial x} = \frac{1}{4\pi} \frac{y(-y^2 - 3x^2 + v_p x^2 - v_p y^2)}{r^4}
\]

(Z.37)

\[
\frac{\partial M^*_{xy}}{\partial x} = \frac{1}{4\pi} \frac{x(v_p - 1)(x^2 - y^2)}{r^4}
\]

(Z.38)

\[
\frac{\partial T^*_x}{\partial y} = \frac{1}{\pi} \frac{xy}{r^3}
\]

(Z.39)

\[
\frac{\partial T^*_y}{\partial y} = -\frac{1}{2\pi} \frac{1}{r^2} + \frac{1}{\pi} \frac{y^2}{r^4}
\]

(Z.40)
Z.4. OBLICZANIE MOMENTÓW ZGINAJĄCYCH I MOMENTU SKRĘCAJĄCEGO

Układ współrzędnych przesunięto równolegle i zaczepiono w punkcie, w którym obliczane są momenty zginające i moment skręcający. Przyjęto oznaczenia: \(x_1 = x \), \(x_2 = y \) i \(r = \sqrt{x^2 + y^2} \).

Drugie pochodne funkcji podstawowych:

\[
\frac{\partial^2 w^*}{\partial x^2} = \frac{1}{4\pi D} \left[\ln\left(\sqrt{x^2 + y^2} + \frac{x^2}{r^2} + \frac{1}{2}\right) \right] \quad (Z.41)
\]

\[
\frac{\partial^2 w^*}{\partial y^2} = \frac{1}{4\pi D} \left[\ln\left(\sqrt{x^2 + y^2} + \frac{y^2}{r^2} + \frac{1}{2}\right) \right] \quad (Z.42)
\]

\[
\frac{\partial^2 w^*}{\partial x \partial y} = \frac{1}{4\pi D} \frac{xy}{r^2} \quad (Z.43)
\]

\[
\frac{\partial^2 \varphi^*_x}{\partial x^2} = \frac{1}{2\pi D} \left[\frac{3}{2} \frac{x}{r^2} - \frac{x^3}{r^4} \right] \quad (Z.44)
\]

\[
\frac{\partial^2 \varphi^*_y}{\partial y^2} = \frac{1}{2\pi D} \left[\frac{1}{2} \frac{y^2}{r^2} - \frac{x^2 y}{r^4} \right] \quad (Z.45)
\]

\[
\frac{\partial^2 \varphi^*_x}{\partial x \partial y} = \frac{1}{2\pi D} \left[\frac{1}{2} \frac{y}{r^2} - \frac{x^2 y}{r^4} \right] \quad (Z.46)
\]

\[
\frac{\partial^2 \varphi^*_y}{\partial y \partial x} = \frac{1}{2\pi D} \left[\frac{1}{2} \frac{x}{r^2} - \frac{x^2 y}{r^4} \right] \quad (Z.47)
\]

\[
\frac{\partial^2 \varphi^*_y}{\partial x^2} = \frac{1}{2\pi D} \left[\frac{3}{2} \frac{y}{r^2} - \frac{y^3}{r^4} \right] \quad (Z.48)
\]

\[
\frac{\partial^2 \varphi^*_y}{\partial y \partial x} = \frac{1}{2\pi D} \left[\frac{1}{2} \frac{x}{r^2} - \frac{xy^2}{r^4} \right] \quad (Z.49)
\]

\[
\frac{\partial^2 M^*_x}{\partial x^2} = \frac{1}{4\pi} \frac{x^4 + 6x^2 y^2 - 3y^4 + v_p x^4 - 6v_p x^2 y^2 + v_p y^4}{r^6} \quad (Z.50)
\]

\[
\frac{\partial^2 M^*_x}{\partial y^2} = \frac{1}{4\pi} \frac{-6x^2 y^2 - x^4 - y^4 - 6v_p x^2 y^2 - v_p y^4 + 3v_p x^4}{r^6} \quad (Z.51)
\]
\[
\frac{\partial^2 M_x^*}{\partial x \partial y} = \frac{1}{2\pi} \frac{x y (-x^2 + 3y^2 + 3\nu_p x^2 - \nu_p y^2)}{r^6}
\] (Z.52)

\[
\frac{\partial^2 M_x^*}{\partial x^2} = \frac{1}{4\pi} \frac{x^4 - y^4 - 6x^2 y^2 + \nu_p x^4 + 6\nu_p x^2 y^2 - 3\nu_p y^4}{r^6}
\] (Z.53)

\[
\frac{\partial^2 M_y^*}{\partial y^2} = \frac{1}{4\pi} \frac{6x^2 y^2 + y^4 - 3x^4 + \nu_p x^4 - 6\nu_p x^2 y^2 + \nu_p y^4}{r^6}
\] (Z.54)

\[
\frac{\partial^2 M_x^*}{\partial x \partial y} = -\frac{1}{2\pi} \frac{x y (-3x^2 + y^2 - 3\nu_p x^2 + \nu_p y^2)}{r^6}
\] (Z.55)

\[
\frac{\partial^2 M_{xy}^*}{\partial x^2} = \frac{3}{2\pi} \frac{(1-\nu_p) xy}{r^4} - \frac{2}{\pi} \frac{(1-\nu_p) x^3 y}{r^6}
\] (Z.56)

\[
\frac{\partial^2 M_{xy}^*}{\partial y^2} = \frac{3}{2\pi} \frac{(1-\nu_p) xy}{r^4} - \frac{2}{\pi} \frac{(1-\nu_p) x y^3}{r^6}
\] (Z.57)

\[
\frac{\partial^2 M_{xy}^*}{\partial x \partial y} = -\frac{1}{4\pi} \frac{(\nu_p - 1)(x^4 - 6x^2 y^2 + y^4)}{r^6}
\] (Z.58)

\[
\frac{\partial^2 T_x^*}{\partial x^2} = \frac{3}{\pi} \frac{x}{r^4} - \frac{4}{\pi} \frac{x^3}{r^6}
\] (Z.59)

\[
\frac{\partial^2 T_x^*}{\partial x^2} = \frac{1}{\pi} \frac{x}{r^4} - \frac{4}{\pi} \frac{xy^2}{r^6}
\] (Z.60)

\[
\frac{\partial^2 T_x^*}{\partial x \partial y} = \frac{1}{\pi} \frac{y}{r^4} - \frac{4}{\pi} \frac{x^2 y}{r^6}
\] (Z.61)

\[
\frac{\partial^2 T_y^*}{\partial x^2} = \frac{1}{\pi} \frac{y}{r^4} - \frac{4}{\pi} \frac{x^2 y}{r^6}
\] (Z.62)

\[
\frac{\partial^2 T_y^*}{\partial y^2} = \frac{3}{\pi} \frac{y}{r^4} - \frac{4}{\pi} \frac{y^3}{r^6}
\] (Z.63)

\[
\frac{\partial^2 T_y^*}{\partial x \partial y} = \frac{1}{\pi} \frac{x}{r^4} - \frac{4}{\pi} \frac{xy^2}{r^6}
\] (Z.64)
Z.5. OBLICZANIE ELEMENTÓW MACIERZY D

Przyjęto oznaczenia:

\[x_1 = x, \quad x_2 = y, \quad r = \sqrt{x^2 + y^2}, \]

\[x_p = x_m - \frac{a_x}{2}, \quad x_k = x_m + \frac{a_x}{2}, \quad y_p = y_m - \frac{a_y}{2}, \quad y_k = y_m + \frac{a_y}{2}, \]

\[r_1 = \sqrt{x_p^2 + y_p^2}, \quad r_2 = \sqrt{x_k^2 + y_p^2}, \quad r_3 = \sqrt{x_k^2 + y_k^2}, \quad r_4 = \sqrt{x_p^2 + y_k^2}, \]

\[
\int_{\Omega_0} \frac{1}{r} \cdot d\Omega_0 = x_p \ln \left(\frac{y_p + r_1}{y_k + r_4} \right) - y_k \ln \left(\frac{x_p + r_4}{x_k + r_3} \right) + x_k \ln \left(\frac{y_k + r_3}{y_p + r_2} \right) - y_p \ln \left(\frac{x_k + r_2}{x_p + r_1} \right)
\] (Z.65)